【超越白皮书4】Bancor 算法的数学、经济学解析与参数测算
摘要EOS RAM在经过了价格大幅度波动后,其背后的Bancor定价机制也越来越为人所熟知。
继《【火线视点8】没有免费的午餐——从EOS RAM价格看公链通证经济体系设计》后,火币区块链研究院继续对这一算法研究,分析其后背的数学和经济学原理,并通过公式,我们计算对比了不同参数下RAM价格,主要得到以下研究结果:Bancor公式中隐藏价格函数与经济学上的价格弹性曲线的概念相通。
由于是根据供需量来得出价格,Bancor经过微积分计算得出购买RAM时所需EOS的等效价格,防止产生购买价格误差。
在不同的曲线参数下,价格会有不同。
我们以北京时间7月10日18点40分的情况为例,使用MATLAB R2015a进行测算:付出10 EOS以上,参数取值改为0.5会比0.0005的商品“性价比”更高。
报告正文1.引言EOS RAM在经过了价格大幅度波动后,其背后的Bancor定价机制也越来越为人所熟知。
继《【火线视点8】没有免费的午餐——从EOS RAM价格看公链通证经济体系设计》后,火币区块链研究院继续对这一算法研究,分析其后背的数学和经济学原理。
通过公式,我们计算对比了不同参数下RAM价格,可看到参数的确会产生一定程度上的影响。
另外需要注意的是:测算得到的数据结果不是也不应被视为是对EOS RAM未来价格走势等情况的证明或确认。
特此声明。
2.主要结论经过研究与测试分析,我们得到以下主要结论及技术建议:Bancor公式中隐藏价格函数与经济学上的价格弹性曲线的概念相通。
由于是根据供需量来得出价格,Bancor经过微积分计算得出购买RAM时所需EOS的等效价格,防止产生购买价格误差。
在不同的曲线参数下,价格会有不同。
我们以北京时间7月10日18点40分的情况为例,使用MATLAB R2015a进行测算:付出10 EOS以上,参数取值改为0.5会比0.0005的商品“性价比”更高。
3.什么是BancorBancor算法的本质我们在此前的《【火线视点8】没有免费的午餐——从EOS RAM价格看公链通证经济体系设计》报告中有过介绍:它是在1940年-1942年间由凯恩斯、舒马赫提出的一个超主权货币的概念,可作为一种账户单位用于国际贸易中,并由英国在二战后正式提出。
然而,由于美国实力在二战后一枝独秀,Bancor 方案并没有在布雷顿森林会议上被采纳使用。
但应用这一思想的 Bancor 算法则继续延续了其生命力。
Bancor 算法由 Bancor Network 项目提出应用,旨在采用公式来设定好数字资产间的兑换价格。
其联合创始人 Eyal Hertzog 近期也被BM邀请一起来探讨 EOS 中 Bancor 算法的应用。
虽然Bancor Network近期也经历被盗风波,但这不妨碍我们继续研究这一算法。
既然是原本要用于国际贸易的模型,那必然涉及到不同实体间如何兑换。
Bancor 白皮书中对定价模型有着十分严谨和详细的说明。
它定义了两类token:一种是通常会流通使用的 connector token(即储备金,例如:BTC、ETH、EOS等),而另一种是作为“超平台”中间媒介的 Smart Token。
为了使得兑换价格满足刚才提到的供需关系,设计的公式中的价格为 connector 的可流通余量(balance)除以 按照一定系数的Smart Token 供应量:(来源:Bancor Network白皮书)其中,CW 的英文是 Connector Weight,表示设计出来的 Smart Token 的总价值与实际在使用中的 connector 余量间的关系,设计好后为一个固定参数:(来源:Bancor Network白皮书)总体上来说,就是 Smart Token 的供应量越少或者 connector 的余量越多,那么使用 connector 来兑换 Smart Token 的价格就越高。
虽然很不严谨,但这也就能理解了为什么 EOS 的 RAM 越少,价格越高了。
至于不严谨的原因,我们将在下文继续解释。
4.公式设计思路回到 RAM 价格上,那么无疑在 EOS 主网刚上线的时候,RAM 供应量最多。
可以看到最低价格是 0.017 EOS/KB 。
按照这个价格,也就是买 1MB 需要 0.017 * 1024 = 17.408 EOS。
那么,全部 64GB RAM 在这个时候值 1140850.688 EOS,是不是这个时候花费这些 EOS 就可以把 64 GB一次性都买下?答案显然是否定的。
实际上,有多种方式可以限制这种做法。
最简单的一种就是限制每次买卖的数量:只要设置每次只能购买 32GB,那么第二次买 RAM 的价格就会提高很多,买的总成本就会变的很高。
再循环细分下去为 16GB、8GB …… 总的价格就会越来越合理。
这在数学上是有相应的工具可以使用的。
(来源:https://zh.wikipedia.org/wiki/微分)是的,就是微积分。
在 Bancor Network 白皮书中引用的另外一个资料中,可以看到这个推导过程。
定义R为当前connector的余量、S为当前Smart Token的供应量、F为系数(即上文中的CW)、P为当前Smart Token的价格,那么有:Smart Token的市场总量 = SPConnector余量 R = FSP, 即当要购买dS 的Smart Token时,用户需要付出P dS 的成本,也等于剩余connector的变化量,即dR = P dS又因为R = FSP,同时微分可得到:dR = d(FSP) = F d(SP) = F(S dP + P dS),所以综合上述两个等式可得:(来源:《Formulas for Bancor system》)然后我们可以看到,这个微分方程的结果和经济学上的一个概念是一样的。
(来源:Bancor Network白皮书)是的,就是经济学上的价格弹性曲线:当 CW 或者 F 为 1 时,提供100%的流动性,因此价格毫无弹性,一直维持在某一水平线上当 CW 大于 0 小于 1 时,即上述正常供需情况下的价格曲线有了这个价格函数后,再对其进行积分,即可得到不同量的 connector 可换购的 Smart Token 数量。
定义用户要购买Smart Token的数量为T,那么可得到需要付出的connector的数量E为:(来源:Bancor Network白皮书)如果用付出的connector 除以兑换到的Smart Token 数量,即可得到等效价格(Effective Price),即只要付出的connector总量一样,不管分多少次购买,所获得的Smart Token总量是一样的,因此也就不需要限制单次购买量了。
但相应的,如果单次付出不同数量的connector,折算得到的单价也会不一样,所以不会存在上文假设的“套利”情况。
5.EOS RAM的公式更复杂EOS 应用 Bancor 算法过程中,并不是将 EOS 和 RAM 直接用价格曲线进行兑换,而是引入了中间 token——RAMCORE,对应于 Bancor 中的 Smart Token。
EOS 和 RAM 兑换逻辑的代码主要在:https://github.com/EOSIO/eos/blob/v1.0.8/contracts/eosio.system/exchange_state.cpp EOS 到 RAM 的兑换过程就涉及了两个公式,所以上文中用一个公式来举例就很不严谨,只是为了定性的说明价格特性。
从代码中可看到EOS与RAMCORE的兑换公式为:其中,E为EOS到RAMCORE所能兑换的数量,R是RAMCORE的初始发行总量,C1为当前EOS余量,T1为用于购买的EOS数量,F为常量参数将上述公式的进行反向整理设计,即可得到RAMCORE与RAM的兑换公式为:其中,T2是准备购入的RAM数量:C2为可分配的RAM余量。
将中间变量E代入即可得出用于购买的EOS数量(T1)与可兑换到的RAM数量(T2)之间的关系。
关于【超越白皮书4】Bancor 算法的数学、经济学解析与参数测算的信息到此就结束了,如果你还想了解更多这方面的信息,记得收藏关注本站。相关文章
- 比特币零售交易量占比与价格走势有何关联?(中国比特币交易量占比)
- 值得收藏!《区块链与供应链金融白皮书》(人人都懂区块链读后感)
- Facebook加密货币项目Libra白皮书中文版(附电子版文件下载链接)
- 数字币市场未来价格预测:现在哪个币能赚钱(未来最有价值的数字货币)
- 今日比特币价格预测实时行情分析(比特币今日价格行情比特币)
- 浙商银行:2020年基于区块链技术的供应链金融白皮书(电子版全文)
- 投资数字加密虚拟货币如何用场外价格预测场内价格的技巧解读
- 分析师:比特币未来价格有望达到500万美元,但大多数交易者将亏损
- 中国信通院发布《大数据白皮书(2019年)》(附PPT解读)
- 深度 - 比特币价格波动与人民币汇率的联系分析